If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+575t+30=0
a = -16; b = 575; c = +30;
Δ = b2-4ac
Δ = 5752-4·(-16)·30
Δ = 332545
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(575)-\sqrt{332545}}{2*-16}=\frac{-575-\sqrt{332545}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(575)+\sqrt{332545}}{2*-16}=\frac{-575+\sqrt{332545}}{-32} $
| -8x+12=12-4x | | w/5+13=31 | | 3p-7=15(p=2) | | 9x-15=-6x+21 | | -16=3u–4 | | 12=-8q+4q | | 2=-8q+4q | | -28x+6=3(1=7x)-7x | | 9x-15x=-6+21 | | 9x+4-3+21=17 | | 5x-5=-4+3x | | 16w+3=19 | | 2x/10+2=4x/5 | | 7+9-x=4 | | 2x-x^2-182=0 | | -17=2v=7-5v | | 3x+-36=24 | | 1.5+x=9.8 | | x^2-2x+182=0 | | -5(u–7)=-10 | | 4+5-x=17 | | 8+5x=7-3x | | z-5.4=10.8 | | -x^2+2x+182=0 | | 4y+27=9 | | -3(x)=4x^2-5 | | 7=6p+10-5p | | 6(3)^7x-4=126 | | x^2+2x+182=0 | | 7x-10=7x+2 | | -5p=23=13 | | x+1.5=-8.3 |